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Abstract
Here, we present the results of theoretical analysis of the de Haas–van Alphen
oscillations in quasi-two-dimensional normal metals. We have studied the
effects of the Fermi surface (FS) shape on these oscillations. It is shown
that the effects could be revealed and well pronounced when the FS curvature
becomes zero at cross-sections with extremal cross-sectional areas. In this
case, both the shape and amplitude of the oscillations could be significantly
changed. Also, we analyse the effect of the FS local geometry on the angular
dependences of the oscillation amplitudes when the magnetic field is tilted away
from the FS symmetry axis by the angle θ . We show that a peak appears
at θ ≈ 0◦ whose height could be of the same order as the maximum at the
Yamaji angle. This peak emerges when the FS includes zero-curvature cross-
sections of extremal areas. Such a maximum was observed in experiments on
α-(BETS)4TIHg(SeCN)4. The results that were obtained could be applied to
organic metals and other quasi-two-dimensional compounds.

1. Introduction

Magnetic quantum oscillations are well known as a powerful tool used repeatedly in studies of
the electronic properties of various conventional metals [1]. The theory of quantum oscillatory
phenomena, such as de Haas–van Alphen oscillations in the magnetization and Shubnikov–
de Haas oscillations in the magneto-resistivity of conventional three-dimensional metals, was
derived by Lifshitz and Kosevich (LK) in their well-known work [2]. This theory was employed
succesfully to extract valuable information concerning electron band-structure parameters from
experimentally measured magnetic quantum oscillations.

In the last two decades quasi-two-dimensional (Q2D) materials with metallic-type
conductivity (e.g. organic metals, intercalated compounds and some others) have attracted
substantial interest, and extensive efforts have been applied to study their electronic
characteristics. Magnetic quantum oscillations are frequently used as a tool in these
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studies [3, 4]. A theory of magnetic oscillations in Q2D materials was proposed in several
works (see e.g. [5–12]). Significant progress has already been made in developing the theory,
but still there remain some significant points that have not been taken into account so far. The
purpose of the present work is to contribute to the theory of de Haas–van Alphen oscillations
in Q2D conductors by analysing one of these points, namely the effect of Fermi surface (FS)
curvature on the amplitude and shape of the oscillations.

It has already been shown that local geometrical features of the FS may strongly affect
quantum oscillations of elastic constants in both conventional and Q2D metals [13, 14], so one
has grounds to expect similar manifestations in the magnetization oscillations. The effect of
the FS local geometry on quantum oscillations in various observables could easily be given
an explanation. In general, quantum oscillations are specified with contributions from the
vicinities of effective cross-sections of the FS. These are cross-sections with minimum and
maximum sectional areas. When the FS curvature becomes zero at an effective cross-section,
the number of electrons associated with the latter increases, and their response is enhanced.
This may significantly strengthen the oscillations originating from such cross-sections and
change their shape and phase.

2. The model

The FSs of Q2D metals are known to be systems of weakly rippled cylinders. Accordingly,
the current theory adopts the tight-binding approximation to describe the energy–momentum
relation for the charge carriers. So, the energy spectrum could be written as follows:

E(p) =
∑

n=0

En(px, py) cos

(
npzd

h̄

)
. (1)

Here, the z axis is assumed to be perpendicular to the conducting layers; px, py, pz are the
quasi-momentum p coordinates, and d is the interlayer distance. The dependence of the
energies En of px, py is introduced in equation (1) to take into account the anisotropies of
the energy spectrum in the conducting layer planes. Due to the weakness of the interlayer
interactions in Q2D conductors, the coefficient E0(px, py) is much greater than the remaining
coefficients in the Fourier series in equation (1). Usually, in studies of magnetic quantum
oscillations in Q2D conductors, the general energy–momentum relation (1) is simplified. The
anisotropy of the energy spectrum in the layer planes is neglected, and only the first two perms
in the sum over ‘n’ are kept. Then we arrive at the following simple model for a Q2D Fermi
surface:

E(p) = p2
⊥

2m⊥
− 2t cos

(
pzd

h̄

)
(2)

where p⊥ is the quasi-momentum projection on the layer plane, and m⊥ is the effective
mass corresponding to the motion of quasi-particles in this plane. The parameter t in this
expression (2) is the interlayer transfer integral whose value determines how much the FS is
warped. When t goes to zero, the FS becomes perfectly cylindrical.

Within this commonly used approximation, the FS profile is established completely. When
a strong magnetic field B is applied along the normal to the layers (B = (0, 0, B)), the FS
Gaussian curvature at the effective cross-sections Kex is given by:

Kex = − 1

2Aex

(
d2 A

dp2
z

)
= ±2π tm⊥

Aex

(
d

h̄

)2

(3)
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Figure 1. Schematic plots of a Fermi surface with a cosine warping corresponding to the model (2)
(left), and a Fermi surface of a complex profile including cross-sections with maximum areas where
the FS curvature becomes zero (right).

where (d2 A/dp2
z )ex means that the second derivative is calculated at the effective cross-section.

and Aex is the cross-sectional area. So, the curvature takes on values that are proportional to
those of the interlayer transfer integral t , and it becomes zero only when the latter turns zero
and the FS passes into a perfect unwarped cylinder.

However, there are grounds to believe that the FSs of some realistic Q2D
conductors possess more complex geometries than those described by equation (2). For
instance, in experiments on magnetic quantum oscillations in the layered perovskite oxide
Sr2RuO4 [15, 16], it was shown that, to describe the FS of this material adequately, one
must take into consideration at least four terms in the expansion (1). Here, we consider the
Fermi cylinder corrugation of an arbitrary shape, provided that the cylinder remains a surface
of revolution. Separating out the first term in the expansion (1), we may rewrite the energy–
momentum relation in the form [17]:

E(p) = p2
⊥

2m⊥
− 2tε

(
pzd

h̄

)
(4)

where

ε

(
pzd

h̄

)
=

∞∑

n=1

εn cos

(
npzd

h̄

)
(5)

with εn = −En/2t . It follows from this expression that ε(pzd/h̄) is an even periodic function
of pz whose period equals 2π h̄/d . Omitting all terms with n > 1 and assuming E = 2t ,
we may reduce our energy–momentum relation (4) to the simple form (2). By introducing this
expression we obtain opportunities to describe Q2D FSs of various profiles (see figure 1) and to
analyse the influence of their fine geometrical features on the de Haas–van Alphen oscillations.
As shown below, these studies bring some non-trivial results which could not be obtained within
the simple approximation (2).
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3. Quantum oscillations in magnetization

We start from the standard expression for the longitudinal magnetization:

M‖(B, T, μ) ≡ Mz(B, T, μ) = −
(

∂�

∂ B

)

T,μ

. (6)

Here, the magnetization depends on the temperature T and the chemical potential μ. The latter
itself is a function of the magnetic field and temperature, and oscillates in strong magnetic
fields. The expression for the thermodynamic potential can be written in the usual fashion:

�(B, T, μ) = −T
∑

ln

{
1 + exp

[
μ − E

T

]}
(7)

where the summation is carried over all possible states of quasi-particles. When a strong
magnetic field is applied, the quasi-particles have the Landau energy spectrum, so the
expression (4) takes the form:

En,σ (pz) = h̄ω

(
n + 1

2

)
+ σ

1

2
gh̄ω0 − 2tε

(
pzd

h̄

)
. (8)

Here, ω is the cyclotron frequency and ω0 = β B; β is the Bohr magneton, σ is the spin
quantum number and g is the spin splitting coefficient (g-factor). Accordingly, we rewrite
equation (7) as follows:

�(B, T, μ) = − Tω

(2π h̄)2

∑

n,σ

∫ π h̄/d

−π h̄/d
ln

{
1 + exp

[
μ − En,σ (pz)

T

]}
m⊥ dpz. (9)

In further consideration, we assume as usual that the cyclotron quantum h̄ω is small compared
to the chemical potential μ. Then we employ the Poisson summation formula:

∞∑

n=0

f
(
n + 1

2

) =
∫ ∞

0
f (x)

[
1 + 2 Re

∞∑

r=1

(−1)r exp(2π ir x)

]
dx . (10)

Using this formula, the expression for the thermodynamic potential can be presented as a sum
of a monotonic term �0 and an oscillating correction ��:

�� = i

4π2h̄λ2

∑

σ

∞∑

r=1

(−1)r

r

∫ ∞

0

I (Eσ ) dE

1 + exp[(Eσ − μ)/T ] . (11)

The function I (Eσ ) is given by:

I (Eσ ) = 2i
∫

exp

[
ir

λ2

h̄2
A(Eσ , pz)

]
dpz (12)

where λ is the magnetic length and A(Eσ , pz) is the cross-sectional area.
Until this point we followed LK theory in the derivation of the expression for ��. As

a result we arrived at equations (11) and (12), which are valid for conventional 3D metals as
well as for Q2D and perfectly 2D conductors. Diversities in the expressions for �� appear
in the course of calculations of the function I (Eσ ). These calculations yield different results
for different FS geometries. In deriving the standard LK formula it is assumed that the FS
curvature is non-zero at the effective cross-sections with the extremal areas, and I (Eσ , pz) is
approximated using the stationary phase method. For 2D metals the calculations of I (Eσ ) are
trivial, for the FS is a cylinder and the cross-sectional area A does not depend on pz. Obviously,
in this case the FS curvature is zero everywhere. The oscillating part of the thermodynamic
potential � for a 2D metal takes on the form:

�� = Nh̄ω

(
B

F

) ∞∑

r=1

(−1)r

(πr)2
RT (r)RS(r) cos

(
2πr F

B

)
. (13)
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Here, F = cA/2π h̄e, N is the density of charge carriers, and RT (r) and RS(r) describe
the effects of temperature and spin splitting, respectively. Also, the scattering of electrons
deteriorates magnetic quantum oscillations, for it causes energy-level broadening. The simplest
way to account for the effects of electron scattering on the oscillation amplitudes is to
introduce an extra damping factor RD(r) (Dingle factor) into the expression (13). The usual
approximation for the latter has the form RD(r) = exp(−2πr/ωτ) [1], where τ is the scattering
time of electrons. In further calculations we adopt this simple form for RD(r), for more
sophisticated expressions are irrelevant to the main point of our subject. As a result we obtain:

�� = Nh̄ω

(
B

F

) ∞∑

r=1

(−1)r

(πr)2
RT (r)RS(r)RD(r) cos

(
2πr F

B

)

≡ Nh̄ω

(
B

F

) ∞∑

r=1

(−1)r

(πr)2
R(r) cos

(
2πr F

B

)
. (14)

Correspondingly, we arrive at the following result for the oscillating part of the longitudinal
magnetization [10]:

�M‖ = −2Nβ
ω

ω0

∞∑

r=1

(−1)r

πr
R(r) sin

(
2πr

F

B

)
. (15)

Taking into account the pz-dependent term in the charge carriers’ energy spectrum within the
approximation (2), one can expand the integrand in equation (12) in Bessel functions and easily
carry out integration over pz . Then �M‖ takes the form [18]:

�M‖ = −2Nβ
ω

ω0

∞∑

r=1

(−1)r

πr
R(r)J0

(
4πr t

h̄ω

)
sin

(
2πr

F

B

)
. (16)

When FS warping is negligible (t � h̄ω) this expression passes into the previous formula (15)
describing the magnetization of a 2D metal. In the opposite limit (t > h̄ω) one can use the
corresponding asymptotic for the Bessel functions. As a result the expression for �M‖ is
transformed into a form similar to the LK result for conventional 3D metals:

�M‖ = −2Nβ
ω

ω0

√
h̄ω

2π2t

∞∑

r=1

(−1)r R(r)

πr 3/2
sin

(
2πr

F

B

)
cos

(
4πr t

h̄ω
− π

4

)

= −Nβ
ω

ω0

√
h̄ω

2π2t

∞∑

r=1

(−1)r R(r)

πr 3/2

×
{

sin

(
2πr Fmax

B
− π

4

)
+ sin

(
2πr Fmin

B
+ π

4

) }
(17)

where Fmax = F Amax/A, Fmin = F Amin/A, and Amax and Amin are the maximum and
minimum cross-sectional areas, respectively. As before, A is the cross-sectional area of
the incorrugated cylindrical FS. Before we proceed, we remark again that the commonly
used approximation (2) is not suitable for analysing the effects of the FS shape in Q2D
metals. Within this model, the resulting formulae for �M are either reduced to the 2D limit
(equation (15)) or they describe only cosine warped profiles of the FS without any variations
(equations (16) and (17)). In both cases some important features of the oscillations could be
missed.

We may expect the effect of FS curvature on the magnetization oscillations to appear
when the FS warping is distinct (t > h̄ω). To analyse these effects we return back to our
generalized energy–momentum relation (4). Then we assume that the FS curvature becomes
zero at the effective cross-section at pz = p∗. Then, as follows from the expression for the FS

5
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curvature (3), d2 A/dp2
z equals zero at pz = p∗, so we can write the following approximation

for the cross-sectional area:

A(pz) ≈ Aex ± 1

(2l)!
∣∣∣∣
d2l A

dp2l
z

∣∣∣∣
pz=p∗

(pz − p∗)2l (18)

where l > 1.
Performing integration in parts in the expression (11), we obtain

�� = h̄ω

π2h̄λ2

∞∑

r=1

(−1)2

(πr)2
R(r)

∫ π h̄/d

0
cos

(
rλ2

h̄2 A(pz)

)
dpz. (19)

Then, using the approximation (18) and applying the stationary phase method to compute the
integral over pz in expression (19), we obtain the following result for the contribution δ� from
the nearly cylindrical cross-section to the oscillating part of �:

�� = 2Nαl

(
B

2F

)ρ

h̄ω

∞∑

r=1

(−1)r

(πr)ρ+1
R(r) cos

(
2πr

Fex

B
± π

4l

)
. (20)

Here, ρ = 1 + 1/2l;

αl = Aex

V0
�(ρ)

(
(2l)!Aex

2πm⊥t
∣∣d2lε/dp2l

z

∣∣
pz=p∗

)1/2l

(21)

where V0 is the FS volume in a single Brillouin zone, and �(ρ) is the gamma function. Based on
this expression (20), we get the corresponding term in the oscillating part of the magnetization:

�M‖ = −2Nαlβ

(
B

F

)1/2l
ω

ω0

∞∑

r=1

(−1)r

(πr)ρ
R(r) sin

(
2πr

Fex

B
± π

4l

)

≡ −2Nξl

(
h̄ω

t

)1/2l ∞∑

r=1

(−1)r

(πr)ρ
R(r) sin

(
2πr

Fex

B
± π

4l

)
(22)

where

ξl = Aex

V0
�(ρ)

(
(2l)!∣∣d2lε/dp2l

z

∣∣
pz=p∗

)1/2l

. (23)

To arrive at the complete expression for �M‖ we must sum up terms originating from all
effective cross-sections of the FS.

The FS shape near pz = p∗ is determined by the shape parameter l. When l = 1 the
FS has non-zero curvature at the cross-section considered. In this case, equation (22) agrees
with the well-known LK result. Assuming that there are two extremal cross-sections (with the
minimum and maximum cross-sectional areas, respectively) and summing up the contribution
from both, we can easily transform our result (22) into the form (17).

When l 
 1 we may roughly estimate
∣∣d2lε/dp2l

z

∣∣
pz=p∗ as (2l)2l+1/(2l + 1) and (2l)!

as exp[(2l + 2) ln(2l + 2)] (see [19]). So, liml→∞ ξl = 1/2, and equation (22) passes into
the expression (15) describing magnetization oscillations in 2D conductors multiplied by 1/2.
This extra factor appears because the expression (22) describes the contribution from a single
nearly cylindrical cross-section of the FS. When the shape parameter for both effective cross-
sections goes to infinity, their contributions to the magnetization oscillations become identical
and, putting them together, we arrive at expression (15). In general, one may treat l as a
phenomenological parameter whose actual value can be found from experiments. The greater
is the value of this parameter, the closer is the FS to a cylinder near pz = p∗.

6
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Figure 2. De Haas–van Alphen oscillations described by equation (22) for l = 4 (left panel) and
l = 1 (right panel). Calculations are carried out for T = TD = 0.5 K, B0 = 10 T, and F/B0 = 300;
TD is the Dingle temperature, and M0 = 2Nβω/ω0.

Oscillations in magnetization described by expression (22) vary in magnitude, shape and
phase, depending on the value of the shape parameter l which determines the FS local geometry
near the effective cross-section. This is illustrated in figure 2. As shown in this figure, when
there is close proximity of the FS near pz = p∗ to a cylinder, the oscillations are saw-toothed
and resemble those occuring in 2D metals [7, 11] or originating from cylindrical segments of
the FSs in conventional 3D metals [20, 21]. When the FS curvature takes on a non-zero value
at pz = p∗ (l = 1), the oscillations are similar to those in conventional metals. Here, we
emphasize the difference between our result (22) and the expression (16). Using the latter, one
could easily obtain saw-toothed oscillations typical for 2D metals, but only for small values of
the transfer integral t (t � h̄ω) when FS crimping is negligible. The present result (22) shows
that the oscillation shape and phase may be determined not by the value of t itself but rather
by the form of the function ε(pzd/h̄) specifying the FS profile. The saw-toothed oscillations
in magnetization could occur at t ∼ h̄ω, when the FS curvature becomes zero at an effective
cross-section. To ease the interpretation of this point, one may imagine an FS shaped as a step-
like cylinder. The curvature of such an FS is zero everywhere, and oscillations from both kinds
of the cross-sections (with minimum and maximum cross-sectional areas, respectively) should
be similar to those in 2D metals. Nevertheless, the difference in the cross-sectional areas (the
FS crimping) could be well pronounced, and a beat effect could be manifested. Obviously, this
effect is absent when t � h̄ω and the FS warping is negligible.

Also, it may happen that the FS curvature becomes zero at some effective cross-sections
and remains non-zero at the rest of them. Then the contributions from zero-curvature cross-
sections (l > 1) would exceed in magnitude those originating from the oridinary cross-sections
(l = 1). This follows from expression (22), where the factor (h̄ω/t)1/2l (h̄ω < 1) is included.
Depending on the value of the shape parameter l, this factor takes on values between (h̄ω/t)1/2

(l = 1) and 1 (l → ∞). So, when there is close proximity of the FS to a pure cylinder at some
extremal cross-sections, the contributions from these cross-sections will predominate, and they
will determine the shape and amplitude of the magnetization oscillations on the whole.

4. The effect of the chemical potential oscillations

It is known that the chemical potential μ oscillates in strong (quantizing) magnetic fields. These
oscillations and the oscillations in the magnetization are closely related and described by similar
series. The chemical potential is determined by the equation:

7
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N =
(

∂�

∂μ

)

T,B

. (24)

When the quantizing magnetic field is applied, the charge carrier density has an oscillating
correction �N(μ):

N = N0(μ) + �N(μ) (25)

where N0 is the charge carrier density at B = 0. Provided that the charge carrier density
is fixed, this correction is to be balanced by an oscillating term, �μ, which appears in the
chemical potencial due to the magnetic field. These corrections are related to each other by the
equation [1]:

�μ
∂ N0

∂μ
= �N(μ) (26)

where ∂ N0/∂μ ≡ D0 is the charge carrier density of states at the FS in the absence of the
magnetic field. So, we have:

�μ(B) = 1

D0

(
∂��

∂μ

)

T,B

. (27)

Assuming that the FS curvature becomes zero at the effective cross-section at pz = p∗, using
expression (20) for ��, and omitting smaller contributions from the remaining cross-sections
of non-zero curvature, we obtain:

�μ = −ζl h̄ω

∞∑

r=1

(−1)r

(πr)ρ
R(r) sin

(
2πr

Fex

B
± π

4l

)
. (28)

Here, ζl = 4Nαl (B/F)ρ/h̄ωD0, and D0 is the electron density of states at the FS in the
absence of the magnetic field. The dimensionless factor ζl takes on small values of the
order of (h̄ω/EF)

1/2l . This result (28) as well as the expression for the oscillating part of
magnetization (22) do not contradict the corresponding results for 2D and 3D metals reported
in earlier works [10, 22]. For a conventional 3D metal whose FS has non-zero curvature
at the effective cross-sections, the oscillating correction �μ is very small compared to EF

(�μ/EF ∼ (h̄ω/EF)
3/2). Therefore it does not cause noticeable changes in de Haas–van

Alphen oscillations. However, in the case of Q2D metals this correction could be more
important [10, 11]. To analyse the effect of quantum oscillations in the chemical potential,
one must take into account that the extremal cross-sectional areas, Aex, include corrections
proportional to �μ, namely:

Aex = Aex(0) + 2πm⊥�μ(B) (29)

where Aex(0) is the cross-sectional area in the absence of the magnetic field. Correspondingly,
the argument of the cosine function in equation (20) must be written in the form:

2πr
Fex

B
± π

4l
= 2πr

(
Fex

0

B
+ �μ

h̄ω

)
± π

4l
. (30)

To simplify further analysis, we keep only the first term in the expansion (28). Then we can
employ the identity:

exp

[
irζl R(1) sin

(
2π

Fex
0

B
± π

4l

)]
=

∞∑

n=−∞
Jn

(
rζl R(1)

)
exp

[
in

(
2π Fex

0

B
± π

4l

)]
(31)

where Jn(rζl R(1)) are the Bessel functions.

8
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Figure 3. The effect of the chemical potential oscillations on the magnetization oscillations.
The curves are plotted by taking into account the chemical potential oscillations according to
equation (32) (left) and neglecting the latter (right). For both curves, l = 4 (ρ = 1.125) and
the remaining parameters coincide with those used in plotting figure 2.

Using this identity we can write the expression for �M‖ as follows:

�M‖ = −2Nαlβ

(
B

F

)1/2l
ω

ω0

∞∑

s=1

{
As sin

(
2πs

Fex
0

B
± πs

4l

)
∓ Bs cos

(
2πs

Fex
0

B
± πs

4l

) }
.

(32)

Here, the coefficients As, Bs are given by:

As =
∞∑

r=1

(−1)r R(r)

(πr)ρ

{
Jr+s

(
rζl R(1)

)
cos

(
π(r + 1)

4l

)
− Jr−s

(
rζl R(1)

)
cos

(
π(r − 1)

4l

) }
;

(33)

Bs =
∞∑

r=1

(−1)r R(r)

(πr)ρ

{
Jr+s

(
rζl R(1)

)
sin

(
π(r + 1)

4l

)
− Jr−s

(
rζl R(1)

)
sin

(
π(r − 1)

4l

) }
.

(34)

These formulae (32)–(34) are generalizations of the results obtained for 2D metals [11, 23, 24].
As follows from equations (32)–(34), the oscillating correction to the chemical potential

may cause some changes in the amplitude and shape of the de Haas–van Alphen oscillations in
Q2D metals. Keeping in mind that the damping factor R(r) takes on values less than unity and
reduces while r increases, we can write explicit expressions for the first few harmonics in the
form:

δM1 = 2Nαl R(1)π−ρ sin

(
2π

Fex
0

B
± π

4l

)
; (35)

δM2 = −2Nαl R(2)(2π)−ρ

{
sin

(
4π

Fex
0

B
± π

4l

)
+ R2(1)

R(2)
21/2lζl sin

(
4π

Fex
0

B
± π

2l

) }
; (36)

δM3 = 2Nαl R(3)(3π)−ρ

{
sin

(
6π

Fex
0

B
± π

4l

)
+ R(2)R(1)

R(3)

(
3

2

)ρ

ζl sin

(
6π

Fex
0

B
± π

2l

) }
.

(37)

So we see that the chemical potential oscillations do not affect the fundamental harmonic but
they contribute to higher harmonics, causing changes to their amplitude and phase. Similar
conclusions were recently drawn by analysing the effect of chemical potential oscillations on
magnetization in 2D metals [11]. The effect depends on the FS local geometry. When the
shape parameter l takes on greater values, the effect becomes stronger. As shown in figure 3,
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for pronounced proximity of the FS to a cylinder near the effective cross-section (l = 4), a
noticeable difference in the magnetization oscillation’s shape and magnitude arises due to the
effect of the chemical potential oscillations.

The correction from �μ causes changes in the position of spin-splitting zeros in the
harmonics of the de Haas–van Alphen oscillations. These changes have been studied before
within the simple approximation (2) for the energy spectrum [25, 26]. It was shown that the
spin-zero positions for the second and third harmonics are not completely determined with
zeros in corresponding spin-splitting factors RS(2) and RS(3). They also depend on the values
of R(1) and R(3) (which are dependent on temperature and scattering) and on the magnetic
field. Here, we show that the spin-zero positions also depend on the FS geometry at the extremal
cross-sections. This follows from the expressions (36) and (37).

5. Angular dependence of the oscillations amplitudes

The effect of FS curvature on quantum oscillations in the magnetization is expected to be very
sensitive to the geometry of the experiments. The reason is that the effective FS cross-sections
(with the minimum/maximum cross-sectional areas) run along the lines of zero curvature (if
any) only in certain directions of the magnetic field. When the magnetic field is tilted away
from such directions by the angle θ , the extremal cros-section slips from the nearly cylindrical
strip on the FS containing a zero-curvature line. This results in a decrease in the oscillation’s
amplitude. The phase of the oscillations also changes. These angular dependences of the
oscillations’ amplitudes and phases differ radically in origin from the effect first described by
Yamaji [27].

The Yamaji effect occurs due to the coincidence of the FS extremal areas Amax and Amin

at certain angles of inclination of the magnetic field with respect to the FS symmetry axis. At
such angles all the cross-sections on the FS have the same area, so the amplitude of the de
Haas–van Alphen oscillations increases. The Yamaji effect originates from the periodicity of
the pz-dependent contribution to the charge carriers’ energy spectrum, and it is unrelated to the
presence/absence of zero-curvature lines on the relevant FS. Also, there is a crucial difference
in the manifestations of the two effects. The angular dependence originating from the effects
of the FS curvature reveals itself at very small values of θ , whereas the first maximum due to
the Yamaji effect usually appears at θ ∼ 10◦ or even greater. To clarify the difference between
the two effects further, we analyse the angular dependence of de Haas–van Alphen oscillation
amplitudes, assuming that the FS curvature becomes zero at an extremal cross-section when
the magnetic field is directed along the FS axis of symmetry.

We suppose that the magnetic field is inclined from the FS symmetry axis by the angle
θ within the xz plane, and we employ the coordinate system whose z ′ axis is directed along
the magnetic field. We use the energy–momentum relation given by equations (4) and (5),
and we rewrite them in terms of new coordinates p′

z, py, p′
z (p′

x = px cos θ + pz sin θ ;
p′

z = pz cos θ − px sin θ ). Changing variables in equations (4) and (5) and keeping in mind
that sin θ takes on very small values at small angles θ , we may present the energy–momentum
relation for a weakly corrugated Fermi cylinder (t � μ) in the form:

p2
0 = p′2

x cos2 θ + p2
y − 4m⊥t

∞∑

n=1

εn cos

(
nd

h̄
[p′

z cos θ + p′
x sin θ ]

)
(38)

where p0 is the radius of the unwarped Fermi cylinder (p0 = √
A/π). Introducing polar

coordinates in the cutting plane (p′
x = p cos ϕ; py = p sin ϕ), we may calculate the

FS cross-sectional area provided that the magnetic field is tilted away from the FS symmetry

10
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axis:

A(p′
z, θ) =

∫ 2π

0
dϕ

∫ p

0
p dp = A0(θ) + �A(p′

z, θ). (39)

Here,

A0(θ) = 2p2
0

∫ π/2

0

dϕ

cos2 θ cos2 ϕ + sin2 ϕ
= A

cos θ
(40)

and

�A(p′
z, cos θ) = 2m⊥t

∞∑

n=1

εn

∫ 2π

0
cos

(
np′

zd

h̄
cos θ + np0d

h̄
tan θ cos ϕ

)
dϕ. (41)

Then we can present the oscillating part of the longitudinal magnetization in the form:

�M‖ = −2Nβ
ω

ω0

∞∑

r=1

(−1)r

πr
sin

(
2πr F(θ)

B
+ �r (θ)

)
Yr (θ). (42)

Here, Yr (θ) = √
C2

r (θ) + S2
r (θ), � = arctan[Sr (θ)/Cr (θ)], F(θ) = F/ cos θ ,

Cr (θ) = d

2π h̄ cos θ

∫ (π h̄/d) cos θ

(−π h̄/d) cos θ

cos

(
rλ2

h̄2 �A(p′
z, θ)

)
dp′

z, (43)

Sr (θ) = d

2π h̄ cos θ

∫ (π h̄/d) cos θ

(−π h̄/d) cos θ

sin

(
rλ2

h̄2
�A(p′

z, θ)

)
dp′

z. (44)

Expanding the integrand in (41) in Bessel functions, we can easily carry out the integration
over ϕ. Then we get:

�A(p′
z, cos θ) = 4πm⊥t

∞∑

n=1

εn cos

(
np′

z

h̄
cos θ

)
J0

(
np0d

h̄
tan θ

)
. (45)

The first term in this expansion coincides with the result given in the Yamaji work. The latter
was obtained assuming simple cosine warping of the FS described by equation (2).

To analyse the effect of the FS curvature we assume that the curvature becomes zero at
pz = π h̄/d . Requiring that (d2 A/dp2

z )pz=π h̄/d = 0 (see equation (3)) and keeping only the
first two terms in the expansion (5), we obtain:

ε

(
pzd

h̄

)
= cos

(
pzd

h̄

)
+ 1

4
cos

(
2pzd

h̄

)
. (46)

In this case the cross-sectional area A(pz) near pz = π h̄/d is approximated as:

A(pz) = A(p0) + πm⊥t

2

(
d

h̄

)4 (
pz − π h̄

d

)4

. (47)

Comparing this expression with equation (18), we conclude that the shape parameter l = 2.
Correspondingly, we must put ε1 = 1, ε2 = 1/4, εn = 0 (n > 2) into the general

expression (46) for �A(p′
z, θ). As a result we get:

�A(p′
z, cos θ) = 4πm⊥t

[
cos

(
p′

zd

h̄
cos θ

)
J0

(
p0d

h̄
tan θ

)

+ 1

4
cos

(
2p′

zd

h̄
cos θ

)
J0

(
2p0d

h̄
tan θ

)]
. (48)

To describe FSs possessing closer proximity to a perfect cylinder near a certain extremal cross-
section, we must keep more terms in the expansion (5). For instance, assuming ε1 = 1,
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Figure 4. Angular dependences of the magnetization oscillation amplitudes. The curves are plotted
assuming that t/h̄ω = 0.5 and p0d/h̄ = 4π . The shape parameter l takes on the values l = 1
(solid line), l = 2 (dashed line), and l = 3 (dotted line). The plotted curves are described by
equations (42)–(44) (r = 1).

ε2 = 2/5, ε3 = 1/15, and εn = 0 (n > 3), we ensure that both d2 A/dp2
z and d4 A/dp4

z
become zero at pz = π h̄/d , which corresponds to l = 3. Similarly, at ε1 = 1, ε2 = 1/2,
ε3 = 1/7, ε4 = 1/56, and εn = 0 (n > 4), we obtain l = 4, and so forth. Substituting these
numbers into the general expression (45) for �A(p′

z, cos θ), and using the results to compute
the functions Cr (θ) and Sr (θ) given by equations (43) and (44), we may finally calculate the
factors Yr (θ). The latter describe the desired angular dependence of the oscillations amplitudes.

Here, we carried out the calculations accepting t/h̄ω = 0.5 and p0d/h̄ = 4π and keeping
only the first term in the sum over r in equation (42). The resulting curves are presented in
figure 4. The solid line in this figure is associated with the energy spectrum of the form (2).
The corresponding FS has cosine warping and possesses non-zero curvature at the expremal
cross-sections. The high peak at θ = 0.185 (10.6◦) corresponds to the first Yamaji maximum.
The position of this peak is in agreement with the equation (p0d/h̄) tan θ = 3π/4 (see [27]).
Two preceding zeros originate from the beats. The remaining curves represent FSs whose
curvature becomes zero at their minimum cross-sections at θ = 0. We see that the closer the
FS shape to that of a perfect cylinder in the vicinities of these cross-sections (the greater is the
value of l), the greater is the amplitude of the oscillations near θ = 0 and the smaller is the
Yamaji maximum. At l = 3 the Yamaji maximum is approximately two times higher than the
maximum at θ = 0, whereas at l = 1 the ratio of the heights takes on a value close to 4. We
may expect that at very close proximity of the FS to a cylinder near the extremal cross-section
(l ∼ 10), the amplitude maximum at θ = 0 will exceed the Yamaji peak. Also, we see that
the amplitudes of the oscillations associated with the FSs containing zero-curvature extremal
cross-sections do not become zero at small angles θ . This is due to the fact that the FSs that are
considered are warped cylinders whose curvature is zero at the cross-sections with minimum
areas (such as pz = π h̄/d) but remains non-zero at the cross-sections with maximum areas
(such as pz = 0). The difference in the amplitudes of the oscillations originating from the FS
local geometry near its extremal cross-sections prevents beats from being well manifested.

The angular dependence of the magnetization oscillation’s amplitude resembling that
presented in figure 4 was reported to be observed in experiments on the Q2D organic metal α-
(BETS)2TIHg(SeCN)4 [28]. In these experiments a high peak in the amplitude was observed
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when the magnetic field was directed along the axis of the corrugated cylinder which is part of
the FS. When the field was tilted away from this axis by the angle θ , the amplitude decreased
rapidly and reached approximately half of the initial value at θ ∼ 5◦. A further increase in the
angle θ caused small variations in the amplitude until another peak was reached at θ ∼ 18◦.
Identifying this second peak with the first Yamaji maximum, we may conjecture that the higher
peak at θ = 0 arises due to the presence of FS extremal cross-sections of zero curvature.
The relation between the heights of the peaks reported in [27] gives grounds to expect that
the nearly cylindrical segments of the α-(BETS)2TIHg(SeCN)4 Fermi surface (where the FS
curvature becomes zero) are very close to perfect cylinders, so that the shape parameter l takes
on values significantly greater than unity.

6. Conclusion

In summary, the present work aims to study the effect of the FS shape on the de Haas–van
Alphen oscillations in Q2D conductors. Such analysis is important, for there exists a great
deal of interest in studies of band-structure parameters and other electronic properties of these
materials. Usually, a simple model for the electron spectrum (2) is employed to extract the
relevant information from the experiments. This approximation has its limitations, so some
problems arise in interpreting the experimental data (see, e.g., [15, 16, 28]). An important
limitation of the current theory is that the latter misses the effects of the FS geometry assuming
a simple cosine warping of the FS. Here, we lift this restriction on the FS shape. We show
that the FS profile may significantly affect the quantum oscillations in magnetization if the FS
curvature becomes zero at a cross-sectional area. Also, we show that the main characteristics
of the oscillations are determined by two different factors, namely by the FS curvature at the
effective cross-sections and the transfer integral, whereas the existing theory takes into account
only the latter. These two factors work simultaneously, and their effects can be separated. As
discussed above, features that are typical for 2D conductors can be revealed when the FS is
rippled, provided that its curvature becomes zero at cross-sections with extremal areas.

The presence of zero-curvature effective cross-sections noticeably affects the angular
dependences of the oscillation amplitudes. A maximum originating due to the FS local
geometry can emerge. The height of this peak can be comparable to the height of the well-
known Yamaji maximum and even exceed the latter. This agrees with the experimental results
observed on the Q2D α-(BETS)2TIHg(SeCH)4 organic metal [28]. The proposed approach
could be useful in analysing experiments on magnetization oscillations in Q2D conductors,
especially those where saw-tooth features in the oscillations are well pronounced. It could help
to extract important extra information concerning fine geometrical features of the FSs of such
materials.
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